铁蛋白及其活性肽的营养生理作用及应用前景

  
     摘要 :乳铁蛋白(LF)是一种多功能的糖蛋白,乳铁蛋白活性多肽(Lfcin)是从LF上被胃蛋白酶水解下来的25个氨基酸残基的小肽。文中阐述了乳铁蛋白及其活性多肽的结构,介绍了乳铁蛋白及其活性多肽的主要生理作用:抗菌、抑菌、抗病毒、抗氧化,调节机体的免疫和提高肠道对铁离子的吸收等作用。根据乳铁蛋白制备的研究进展,讨论了乳铁蛋白及其活性多肽在乳、食品和动物生产中作为添加剂的应用前景。

    抗生素作为抗菌促生长添加剂加到饲料中由来以久,但其广泛和大量使用导致动物性食品中药物残留等问题愈来愈令人担忧。因此寻找一种安全、环保的新型饲料添加剂以成为当务之急。近年来,乳铁蛋白(Lactoferrin,简称LF)成为当今乳品界和食品界最为关注的“热点”之一。大量研究表明:乳铁蛋白具有抗菌、抑菌、抗病毒、抗氧化和调节机体免疫等作用,可用于开发新型的保健食品和绿色饲料添加剂。

    乳铁蛋白(LF)是一种天然的铁结合蛋白,乳铁蛋白活性多肽(Lfcin)是从LF上被胃蛋白酶水解下来的25个氨基酸残基的小肽。乳铁蛋白存在于人奶及大多数哺乳动物的奶中(马、牛、山羊、猪、兔、小鼠等),也存在于唾液、精液、泪液、气管、鼻腔分泌物、胰液以及其它的身体分泌物中。乳来源不同,乳铁蛋白的含量差异较大。人奶初乳中的乳铁蛋白浓度最高6~8mg/ml,常乳2~4mg/ml;牛的初乳1~5mg/ml,常乳0.02~0.35mg/ml;、大鼠奶中则基本不含乳铁蛋白。但开发乳铁蛋白遇到的最大问题是:制造成本太高,大量制造较困难,难以实现商品化。然而随着一些生物高新技术(如:亲和色谱分离,膜技术,基因工程技术等)得到广泛的应用,完全有可能降低它的成本,使之商品化。目前关于乳铁蛋白的许多研究正在进行中,乳铁蛋白的活性多肽也逐渐引起人们的关注。本文就乳铁蛋白及其活性肽的结构,营养生理功能,基因的调控与表达及开发与利用进行了展望。

    1 乳铁蛋白及其活性多肽的结构

    乳铁蛋白(Lactoferrin,简写为LF)是Groves于1960年首先从牛乳中分离获得,由于LF与铁结合形成红色的复合物,故始称为红蛋白。Blanc和Isliker(1961)将他们从人乳液分离出来,正式命名为乳铁蛋白。乳铁蛋白是一种铁结合性糖蛋白,其分子量为80ku。1分子乳铁蛋白中含有2个铁结合部位,含有15~16个甘露糖,5~6个半乳糖,10~11个乙酰葡萄糖胺和1个唾液酸。牛和人的乳铁蛋白分别含有689和691个氨基酸,其中谷氨酸、天冬氨酸、亮氨酸和丙氨酸的含量较高,除含少量半胱氨酸外,几乎不含其它含硫氨基酸。牛乳LF和人乳LF两者的三维结构非常相似,约有70%的氨基酸序列相一致。LF的二级结构呈2枚“无柄银杏叶并列状”,铁离子的结合点位于两叶的切入部位,每个点可结合1个Fe3+和1个HCO或CO32-。

    乳铁蛋白活性多肽是乳铁蛋白在酸性条件下的降解产物,其抗菌活性明显提高。从乳铁蛋白分子的N端进行分离,可分别得到牛和人乳铁蛋白活性多肽,分别称为lactoferrcinB和lactoferrcinH。牛乳铁蛋白活性多肽(LfcinB)是从BLF的N-端(17~ 41)被胃蛋白酶水解下来的25个氨基酸残基的小肽,其中的11个氨基酸残基具有与完整的LfcinB相同的抗菌活性。11个氨基酸残基中的6个(4~9)是LfcinB的活性中心。而人乳铁蛋白活性多肽含有47个氨基酸残基,序列与lactoferrcinB具有一定的同源性。

    LfcinB的二级结构是在一级结构的肽链上折叠而成。Schibi等(1999)通过核磁共振技术对LfcinB的活性中心的结构进行研究发现, LfcinB是两性分子结构,碱性的Arg 残基和疏水的Trp残基充分分离形成了两性分子结构,Arg残基在分子的一侧,Trp残基在分子的另一侧,Gln在分子的中间。这种结构与LfcinB的抗菌和抗病毒功能分不开。

    2 乳铁蛋白及其活性多肽的营养生理作用

    2.1 杀菌、抑菌作用

    1972年,Bullen等首先提出LF具有抑菌作用。1982年,Arno1d等通过萤光免疫研究发现,LF可与菌体表面结合,从而隔断外界营养物质进入菌体,致使菌体死亡。现已确定,LF属广谱抑菌剂,既可抑制需铁的革兰氏阴性菌,如大肠菌群,沙门氏菌等;也可抑制革兰氏阳性菌。但基本不抑制对铁需求不高的菌,如乳酸菌。

    LF的另一种杀菌方式是通过一种抗菌活性多肽(简称Lfcin)。Tomita等(1991年)和Bellamy等(1992)研究了牛乳铁蛋白的蛋白酶水解物的抗菌效果, 结果表明,猪胰蛋白酶水解得到的小分子多肽具有较强的抗菌作用,其抗菌活性是未降解前的20~400倍以上 。

    Hwang等(1998)研究了LfcinB溶液的三维结构,利用核磁共振(NMR)的X衍射分析发现,LfcinB的空间构象为扭曲的反向平行的β-折叠。对照LF的X衍射分析,LF的结构为α-螺旋结构。由此可以解释正是由于α-螺旋结构向β-折叠的转化,导致了LfcinB的抑菌活性强于LF,因为β-折叠构象更易于贴近细菌的表面,从而有了更多与细菌接触的机会。

    以前有人认为LF和LfcinB对革兰氏阴性菌和阳性菌的抑菌作用是由于乳铁蛋白高度结合铁,使细菌失去生长所需的基本元素铁。但现在研究发现,许多微生物通过分泌小分子铁络合物或通过分泌LF的受体来与LF竞争铁。其真正的抗菌作用是通过直接对细菌或病毒的作用,或通过其水解的多肽对细菌或病毒的杀伤作用。特别是BLF可通过水解得到的LfcinB来实现。及LF通过氨基末端强阳离子结合区域,增加细菌细胞膜的通透性,使细菌的脂多糖从外膜渗出,达到直接杀菌作用。Schibli等(1999)对LfcinB的活性中心的研究显示,位于一侧的2个疏水的Trp残基和另一侧3个带正电荷的Arg 残基与细菌或病毒细胞结合,其中疏水的Trp残基起着膜定位器的作用。第一步是带正电荷的Arg 残基与膜上磷脂基团的阴离子之间的相互作用,接着跟膜上的脂多糖相互作用,然后通过膜定位器Trp的作用,使肽分子的疏水α-螺旋插入膜上,聚合形成孔道,导致内容物外泄,细菌或病毒死亡。随后的一些研究证明了LF抑菌效果均与LF结合铁的能力有关,乳铁蛋白及其活性肽的抑菌作用取决于铁离子的饱和程度,它们与铁离子的饱和程度越高,抑菌活性越弱。

    2.2 抗病毒作用

    Shimizu等(1996)对小鼠在注射细胞肥大包涵体病毒前注射乳铁蛋白,可以提高动物对病毒致死的抵抗力。LF能抑制人HIV-l(免疫缺陷病毒-1)和HCMV(巨细胞病毒)对MT4细胞和成纤维细胞的致病变作用,其抑制浓度(IC50)分别为30~100μg/m1和40μg/m1,牛乳LF抑制病毒的活性约为人乳LF的2.5倍。乳铁蛋白及其活性多肽可以抑制胃肠炎病毒、肝炎病毒、疱疹I型和II型病毒、流感病毒等,即使是携带HCMv病毒的母乳哺喂的婴儿,在最初的1个月内也不易感染,主要是因为初乳中LF含量甚高;而随着母乳中LF水平的下降,约有2/3的婴儿在此后的8个月内存在感染危险。最近,日本学者发现LF具有防止健康细胞受丙型肝炎病毒感染的作用。研究人员把丙肝病毒和牛LF添加到肝脏细胞中一同培养,8d后检查发现,肝脏细胞未受丙肝病毒感染。通过临床试验证实牛奶中的乳铁蛋白能使丙型肝炎病毒减少,有望成为治疗丙肝的一种辅助疗法。乳铁蛋白与铁离子的饱和程度也影响抗病毒活性,处于饱和状态的乳铁蛋白,抑病毒活性明显下降(Hanson等,2000)。关于LF抗病毒的机制,有一种解释是LF能与病毒或宿主细胞相结合,从而阻断了病毒与宿主细胞间的结合,使后者免受病毒的危害。

    2.3 调节机体免疫

    嗜中性细胞、巨嗜细胞和淋巴细胞表面都具有乳铁蛋白受体,而血清中的乳铁蛋白主要是由嗜中性细胞释放出来的[9]。嗜中性粒细胞是含乳铁蛋白最多的细胞,在机体受感染时可以将乳铁蛋白释放出来,释放出的乳铁蛋白夺取致病菌的铁离子致使后者死亡。用牛乳LF治疗的口腔炎,发现嗜中性粒白细胞的活性被明显激活。连续4周给老鼠进食LF能刺激其肠道和脾脏分泌IgA和IgG。体外模拟试验和用鼠类动物、小猪等所作的试验均证实,LF具有调节免疫的功能,能促进抗体生成、T细胞成熟、淋巴细胞增殖、活化自然杀伤细胞(naturalkiller)、抑制混合淋巴球的IL-1,IL-2以及肿瘤坏死因子(TNF)的释放等(Appelmelk等,1994)。

    上述现象机制尚不十分清楚。但也有了一些研究,譬如NK细胞活性的增强已知是由于乳铁蛋白和NK细胞的靶分子之间存在结构同源性,还有乳铁蛋白同细菌脂多糖(LPS)结合后引起LPS介导的TNF-α产生减少可能是先前报道的乳铁蛋白可防止小鼠试验性大肠杆菌败血症的发生的原因。Broek 等(1995)报道乳铁蛋白可通过调节铁离子摄取量而影响T细胞增殖,当铁离子处于低水平时T细胞增殖受抑制,反之则T细胞增殖受到刺激。有人提出乳铁蛋白在炎症部位可通过同组织损伤产生的具有潜在毒性铁离子结合而对T细胞功能起到保护作用。还有人认为乳铁蛋白同单粒细胞和巨噬细胞的结合可能也能起到类似的保护作用。

    乳铁蛋白在炎症反应,感染以及免疫中的作用究竟如何?至今尚缺乏明确的答案,就目前来说已有可能对中性粒细胞脱颗粒产生的乳铁蛋白对炎症免疫反应一系列作用做出一定的设想。由于乳铁蛋白可与细胞表面酸性分子结合,它能同淋巴细胞、巨噬细胞等细胞结合从而防止它们免受由于组织损伤而释放的自由基对它们的损伤。当乳铁蛋白与铁离子结合后,它对蛋白酶的降解作用更具抵抗力,同时使病原微生物可利用的铁离子

相关文章